diff --git a/crypto/aead.c b/crypto/aead.c
index d6ad0c66ee835eeec289be4a68d9bb864847c57b..717b2f6ec9bb3b835e498f3d3c423426b9bffb2f 100644
--- a/crypto/aead.c
+++ b/crypto/aead.c
@@ -26,6 +26,9 @@
 
 #include "internal.h"
 
+static int aead_null_givencrypt(struct aead_givcrypt_request *req);
+static int aead_null_givdecrypt(struct aead_givcrypt_request *req);
+
 static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
 			    unsigned int keylen)
 {
@@ -48,63 +51,63 @@ static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
 	return ret;
 }
 
-static int setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)
+int crypto_aead_setkey(struct crypto_aead *tfm,
+		       const u8 *key, unsigned int keylen)
 {
 	struct aead_alg *aead = crypto_aead_alg(tfm);
 	unsigned long alignmask = crypto_aead_alignmask(tfm);
 
+	tfm = tfm->child;
+
 	if ((unsigned long)key & alignmask)
 		return setkey_unaligned(tfm, key, keylen);
 
 	return aead->setkey(tfm, key, keylen);
 }
+EXPORT_SYMBOL_GPL(crypto_aead_setkey);
 
 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
 {
-	struct aead_tfm *crt = crypto_aead_crt(tfm);
 	int err;
 
 	if (authsize > crypto_aead_alg(tfm)->maxauthsize)
 		return -EINVAL;
 
 	if (crypto_aead_alg(tfm)->setauthsize) {
-		err = crypto_aead_alg(tfm)->setauthsize(crt->base, authsize);
+		err = crypto_aead_alg(tfm)->setauthsize(tfm->child, authsize);
 		if (err)
 			return err;
 	}
 
-	crypto_aead_crt(crt->base)->authsize = authsize;
-	crt->authsize = authsize;
+	tfm->child->authsize = authsize;
+	tfm->authsize = authsize;
 	return 0;
 }
 EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
 
-static unsigned int crypto_aead_ctxsize(struct crypto_alg *alg, u32 type,
-					u32 mask)
-{
-	return alg->cra_ctxsize;
-}
-
 static int no_givcrypt(struct aead_givcrypt_request *req)
 {
 	return -ENOSYS;
 }
 
-static int crypto_init_aead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
+static int crypto_aead_init_tfm(struct crypto_tfm *tfm)
 {
 	struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
-	struct aead_tfm *crt = &tfm->crt_aead;
+	struct crypto_aead *crt = __crypto_aead_cast(tfm);
 
 	if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
 		return -EINVAL;
 
-	crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ?
-		      alg->setkey : setkey;
 	crt->encrypt = alg->encrypt;
 	crt->decrypt = alg->decrypt;
-	crt->givencrypt = alg->givencrypt ?: no_givcrypt;
-	crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
-	crt->base = __crypto_aead_cast(tfm);
+	if (alg->ivsize) {
+		crt->givencrypt = alg->givencrypt ?: no_givcrypt;
+		crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
+	} else {
+		crt->givencrypt = aead_null_givencrypt;
+		crt->givdecrypt = aead_null_givdecrypt;
+	}
+	crt->child = __crypto_aead_cast(tfm);
 	crt->ivsize = alg->ivsize;
 	crt->authsize = alg->maxauthsize;
 
@@ -155,12 +158,17 @@ static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
 }
 
 const struct crypto_type crypto_aead_type = {
-	.ctxsize = crypto_aead_ctxsize,
-	.init = crypto_init_aead_ops,
+	.extsize = crypto_alg_extsize,
+	.init_tfm = crypto_aead_init_tfm,
 #ifdef CONFIG_PROC_FS
 	.show = crypto_aead_show,
 #endif
 	.report = crypto_aead_report,
+	.lookup = crypto_lookup_aead,
+	.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
+	.maskset = CRYPTO_ALG_TYPE_MASK,
+	.type = CRYPTO_ALG_TYPE_AEAD,
+	.tfmsize = offsetof(struct crypto_aead, base),
 };
 EXPORT_SYMBOL_GPL(crypto_aead_type);
 
@@ -174,28 +182,6 @@ static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
 	return crypto_aead_decrypt(&req->areq);
 }
 
-static int crypto_init_nivaead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
-{
-	struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
-	struct aead_tfm *crt = &tfm->crt_aead;
-
-	if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
-		return -EINVAL;
-
-	crt->setkey = setkey;
-	crt->encrypt = alg->encrypt;
-	crt->decrypt = alg->decrypt;
-	if (!alg->ivsize) {
-		crt->givencrypt = aead_null_givencrypt;
-		crt->givdecrypt = aead_null_givdecrypt;
-	}
-	crt->base = __crypto_aead_cast(tfm);
-	crt->ivsize = alg->ivsize;
-	crt->authsize = alg->maxauthsize;
-
-	return 0;
-}
-
 #ifdef CONFIG_NET
 static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
 {
@@ -241,32 +227,24 @@ static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
 }
 
 const struct crypto_type crypto_nivaead_type = {
-	.ctxsize = crypto_aead_ctxsize,
-	.init = crypto_init_nivaead_ops,
+	.extsize = crypto_alg_extsize,
+	.init_tfm = crypto_aead_init_tfm,
 #ifdef CONFIG_PROC_FS
 	.show = crypto_nivaead_show,
 #endif
 	.report = crypto_nivaead_report,
+	.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
+	.maskset = CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV,
+	.type = CRYPTO_ALG_TYPE_AEAD,
+	.tfmsize = offsetof(struct crypto_aead, base),
 };
 EXPORT_SYMBOL_GPL(crypto_nivaead_type);
 
 static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
 			       const char *name, u32 type, u32 mask)
 {
-	struct crypto_alg *alg;
-	int err;
-
-	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
-	type |= CRYPTO_ALG_TYPE_AEAD;
-	mask |= CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV;
-
-	alg = crypto_alg_mod_lookup(name, type, mask);
-	if (IS_ERR(alg))
-		return PTR_ERR(alg);
-
-	err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
-	crypto_mod_put(alg);
-	return err;
+	spawn->base.frontend = &crypto_nivaead_type;
+	return crypto_grab_spawn(&spawn->base, name, type, mask);
 }
 
 struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
@@ -374,14 +352,17 @@ EXPORT_SYMBOL_GPL(aead_geniv_free);
 int aead_geniv_init(struct crypto_tfm *tfm)
 {
 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
+	struct crypto_aead *child;
 	struct crypto_aead *aead;
 
-	aead = crypto_spawn_aead(crypto_instance_ctx(inst));
-	if (IS_ERR(aead))
-		return PTR_ERR(aead);
+	aead = __crypto_aead_cast(tfm);
 
-	tfm->crt_aead.base = aead;
-	tfm->crt_aead.reqsize += crypto_aead_reqsize(aead);
+	child = crypto_spawn_aead(crypto_instance_ctx(inst));
+	if (IS_ERR(child))
+		return PTR_ERR(child);
+
+	aead->child = child;
+	aead->reqsize += crypto_aead_reqsize(child);
 
 	return 0;
 }
@@ -389,7 +370,7 @@ EXPORT_SYMBOL_GPL(aead_geniv_init);
 
 void aead_geniv_exit(struct crypto_tfm *tfm)
 {
-	crypto_free_aead(tfm->crt_aead.base);
+	crypto_free_aead(__crypto_aead_cast(tfm)->child);
 }
 EXPORT_SYMBOL_GPL(aead_geniv_exit);
 
@@ -505,60 +486,14 @@ EXPORT_SYMBOL_GPL(crypto_lookup_aead);
 int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
 		     u32 type, u32 mask)
 {
-	struct crypto_alg *alg;
-	int err;
-
-	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
-	type |= CRYPTO_ALG_TYPE_AEAD;
-	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
-	mask |= CRYPTO_ALG_TYPE_MASK;
-
-	alg = crypto_lookup_aead(name, type, mask);
-	if (IS_ERR(alg))
-		return PTR_ERR(alg);
-
-	err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
-	crypto_mod_put(alg);
-	return err;
+	spawn->base.frontend = &crypto_aead_type;
+	return crypto_grab_spawn(&spawn->base, name, type, mask);
 }
 EXPORT_SYMBOL_GPL(crypto_grab_aead);
 
 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
 {
-	struct crypto_tfm *tfm;
-	int err;
-
-	type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
-	type |= CRYPTO_ALG_TYPE_AEAD;
-	mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
-	mask |= CRYPTO_ALG_TYPE_MASK;
-
-	for (;;) {
-		struct crypto_alg *alg;
-
-		alg = crypto_lookup_aead(alg_name, type, mask);
-		if (IS_ERR(alg)) {
-			err = PTR_ERR(alg);
-			goto err;
-		}
-
-		tfm = __crypto_alloc_tfm(alg, type, mask);
-		if (!IS_ERR(tfm))
-			return __crypto_aead_cast(tfm);
-
-		crypto_mod_put(alg);
-		err = PTR_ERR(tfm);
-
-err:
-		if (err != -EAGAIN)
-			break;
-		if (signal_pending(current)) {
-			err = -EINTR;
-			break;
-		}
-	}
-
-	return ERR_PTR(err);
+	return crypto_alloc_tfm(alg_name, &crypto_aead_type, type, mask);
 }
 EXPORT_SYMBOL_GPL(crypto_alloc_aead);
 
diff --git a/include/crypto/aead.h b/include/crypto/aead.h
index 94b19be67574495c9270bcd29c55292554c8cbe9..dbcad08f4891d193464ec509c46ddf6398efde17 100644
--- a/include/crypto/aead.h
+++ b/include/crypto/aead.h
@@ -17,6 +17,62 @@
 #include <linux/kernel.h>
 #include <linux/slab.h>
 
+/**
+ * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
+ *
+ * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
+ * (listed as type "aead" in /proc/crypto)
+ *
+ * The most prominent examples for this type of encryption is GCM and CCM.
+ * However, the kernel supports other types of AEAD ciphers which are defined
+ * with the following cipher string:
+ *
+ *	authenc(keyed message digest, block cipher)
+ *
+ * For example: authenc(hmac(sha256), cbc(aes))
+ *
+ * The example code provided for the asynchronous block cipher operation
+ * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
+ * the *aead* pendants discussed in the following. In addtion, for the AEAD
+ * operation, the aead_request_set_assoc function must be used to set the
+ * pointer to the associated data memory location before performing the
+ * encryption or decryption operation. In case of an encryption, the associated
+ * data memory is filled during the encryption operation. For decryption, the
+ * associated data memory must contain data that is used to verify the integrity
+ * of the decrypted data. Another deviation from the asynchronous block cipher
+ * operation is that the caller should explicitly check for -EBADMSG of the
+ * crypto_aead_decrypt. That error indicates an authentication error, i.e.
+ * a breach in the integrity of the message. In essence, that -EBADMSG error
+ * code is the key bonus an AEAD cipher has over "standard" block chaining
+ * modes.
+ */
+
+/**
+ *	struct aead_request - AEAD request
+ *	@base: Common attributes for async crypto requests
+ *	@assoclen: Length in bytes of associated data for authentication
+ *	@cryptlen: Length of data to be encrypted or decrypted
+ *	@iv: Initialisation vector
+ *	@assoc: Associated data
+ *	@src: Source data
+ *	@dst: Destination data
+ *	@__ctx: Start of private context data
+ */
+struct aead_request {
+	struct crypto_async_request base;
+
+	unsigned int assoclen;
+	unsigned int cryptlen;
+
+	u8 *iv;
+
+	struct scatterlist *assoc;
+	struct scatterlist *src;
+	struct scatterlist *dst;
+
+	void *__ctx[] CRYPTO_MINALIGN_ATTR;
+};
+
 /**
  *	struct aead_givcrypt_request - AEAD request with IV generation
  *	@seq: Sequence number for IV generation
@@ -30,6 +86,380 @@ struct aead_givcrypt_request {
 	struct aead_request areq;
 };
 
+struct crypto_aead {
+	int (*encrypt)(struct aead_request *req);
+	int (*decrypt)(struct aead_request *req);
+	int (*givencrypt)(struct aead_givcrypt_request *req);
+	int (*givdecrypt)(struct aead_givcrypt_request *req);
+
+	struct crypto_aead *child;
+
+	unsigned int ivsize;
+	unsigned int authsize;
+	unsigned int reqsize;
+
+	struct crypto_tfm base;
+};
+
+static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
+{
+	return container_of(tfm, struct crypto_aead, base);
+}
+
+/**
+ * crypto_alloc_aead() - allocate AEAD cipher handle
+ * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
+ *	     AEAD cipher
+ * @type: specifies the type of the cipher
+ * @mask: specifies the mask for the cipher
+ *
+ * Allocate a cipher handle for an AEAD. The returned struct
+ * crypto_aead is the cipher handle that is required for any subsequent
+ * API invocation for that AEAD.
+ *
+ * Return: allocated cipher handle in case of success; IS_ERR() is true in case
+ *	   of an error, PTR_ERR() returns the error code.
+ */
+struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
+
+static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
+{
+	return &tfm->base;
+}
+
+/**
+ * crypto_free_aead() - zeroize and free aead handle
+ * @tfm: cipher handle to be freed
+ */
+static inline void crypto_free_aead(struct crypto_aead *tfm)
+{
+	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
+}
+
+static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
+{
+	return tfm;
+}
+
+/**
+ * crypto_aead_ivsize() - obtain IV size
+ * @tfm: cipher handle
+ *
+ * The size of the IV for the aead referenced by the cipher handle is
+ * returned. This IV size may be zero if the cipher does not need an IV.
+ *
+ * Return: IV size in bytes
+ */
+static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
+{
+	return tfm->ivsize;
+}
+
+/**
+ * crypto_aead_authsize() - obtain maximum authentication data size
+ * @tfm: cipher handle
+ *
+ * The maximum size of the authentication data for the AEAD cipher referenced
+ * by the AEAD cipher handle is returned. The authentication data size may be
+ * zero if the cipher implements a hard-coded maximum.
+ *
+ * The authentication data may also be known as "tag value".
+ *
+ * Return: authentication data size / tag size in bytes
+ */
+static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
+{
+	return tfm->authsize;
+}
+
+/**
+ * crypto_aead_blocksize() - obtain block size of cipher
+ * @tfm: cipher handle
+ *
+ * The block size for the AEAD referenced with the cipher handle is returned.
+ * The caller may use that information to allocate appropriate memory for the
+ * data returned by the encryption or decryption operation
+ *
+ * Return: block size of cipher
+ */
+static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
+{
+	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
+}
+
+static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
+{
+	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
+}
+
+static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
+{
+	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
+}
+
+static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
+{
+	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
+}
+
+static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
+{
+	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
+}
+
+/**
+ * crypto_aead_setkey() - set key for cipher
+ * @tfm: cipher handle
+ * @key: buffer holding the key
+ * @keylen: length of the key in bytes
+ *
+ * The caller provided key is set for the AEAD referenced by the cipher
+ * handle.
+ *
+ * Note, the key length determines the cipher type. Many block ciphers implement
+ * different cipher modes depending on the key size, such as AES-128 vs AES-192
+ * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
+ * is performed.
+ *
+ * Return: 0 if the setting of the key was successful; < 0 if an error occurred
+ */
+int crypto_aead_setkey(struct crypto_aead *tfm,
+		       const u8 *key, unsigned int keylen);
+
+/**
+ * crypto_aead_setauthsize() - set authentication data size
+ * @tfm: cipher handle
+ * @authsize: size of the authentication data / tag in bytes
+ *
+ * Set the authentication data size / tag size. AEAD requires an authentication
+ * tag (or MAC) in addition to the associated data.
+ *
+ * Return: 0 if the setting of the key was successful; < 0 if an error occurred
+ */
+int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
+
+static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
+{
+	return __crypto_aead_cast(req->base.tfm);
+}
+
+/**
+ * crypto_aead_encrypt() - encrypt plaintext
+ * @req: reference to the aead_request handle that holds all information
+ *	 needed to perform the cipher operation
+ *
+ * Encrypt plaintext data using the aead_request handle. That data structure
+ * and how it is filled with data is discussed with the aead_request_*
+ * functions.
+ *
+ * IMPORTANT NOTE The encryption operation creates the authentication data /
+ *		  tag. That data is concatenated with the created ciphertext.
+ *		  The ciphertext memory size is therefore the given number of
+ *		  block cipher blocks + the size defined by the
+ *		  crypto_aead_setauthsize invocation. The caller must ensure
+ *		  that sufficient memory is available for the ciphertext and
+ *		  the authentication tag.
+ *
+ * Return: 0 if the cipher operation was successful; < 0 if an error occurred
+ */
+static inline int crypto_aead_encrypt(struct aead_request *req)
+{
+	return crypto_aead_reqtfm(req)->encrypt(req);
+}
+
+/**
+ * crypto_aead_decrypt() - decrypt ciphertext
+ * @req: reference to the ablkcipher_request handle that holds all information
+ *	 needed to perform the cipher operation
+ *
+ * Decrypt ciphertext data using the aead_request handle. That data structure
+ * and how it is filled with data is discussed with the aead_request_*
+ * functions.
+ *
+ * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
+ *		  authentication data / tag. That authentication data / tag
+ *		  must have the size defined by the crypto_aead_setauthsize
+ *		  invocation.
+ *
+ *
+ * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
+ *	   cipher operation performs the authentication of the data during the
+ *	   decryption operation. Therefore, the function returns this error if
+ *	   the authentication of the ciphertext was unsuccessful (i.e. the
+ *	   integrity of the ciphertext or the associated data was violated);
+ *	   < 0 if an error occurred.
+ */
+static inline int crypto_aead_decrypt(struct aead_request *req)
+{
+	if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
+		return -EINVAL;
+
+	return crypto_aead_reqtfm(req)->decrypt(req);
+}
+
+/**
+ * DOC: Asynchronous AEAD Request Handle
+ *
+ * The aead_request data structure contains all pointers to data required for
+ * the AEAD cipher operation. This includes the cipher handle (which can be
+ * used by multiple aead_request instances), pointer to plaintext and
+ * ciphertext, asynchronous callback function, etc. It acts as a handle to the
+ * aead_request_* API calls in a similar way as AEAD handle to the
+ * crypto_aead_* API calls.
+ */
+
+/**
+ * crypto_aead_reqsize() - obtain size of the request data structure
+ * @tfm: cipher handle
+ *
+ * Return: number of bytes
+ */
+static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
+{
+	return tfm->reqsize;
+}
+
+/**
+ * aead_request_set_tfm() - update cipher handle reference in request
+ * @req: request handle to be modified
+ * @tfm: cipher handle that shall be added to the request handle
+ *
+ * Allow the caller to replace the existing aead handle in the request
+ * data structure with a different one.
+ */
+static inline void aead_request_set_tfm(struct aead_request *req,
+					struct crypto_aead *tfm)
+{
+	req->base.tfm = crypto_aead_tfm(tfm->child);
+}
+
+/**
+ * aead_request_alloc() - allocate request data structure
+ * @tfm: cipher handle to be registered with the request
+ * @gfp: memory allocation flag that is handed to kmalloc by the API call.
+ *
+ * Allocate the request data structure that must be used with the AEAD
+ * encrypt and decrypt API calls. During the allocation, the provided aead
+ * handle is registered in the request data structure.
+ *
+ * Return: allocated request handle in case of success; IS_ERR() is true in case
+ *	   of an error, PTR_ERR() returns the error code.
+ */
+static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
+						      gfp_t gfp)
+{
+	struct aead_request *req;
+
+	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
+
+	if (likely(req))
+		aead_request_set_tfm(req, tfm);
+
+	return req;
+}
+
+/**
+ * aead_request_free() - zeroize and free request data structure
+ * @req: request data structure cipher handle to be freed
+ */
+static inline void aead_request_free(struct aead_request *req)
+{
+	kzfree(req);
+}
+
+/**
+ * aead_request_set_callback() - set asynchronous callback function
+ * @req: request handle
+ * @flags: specify zero or an ORing of the flags
+ *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
+ *	   increase the wait queue beyond the initial maximum size;
+ *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
+ * @compl: callback function pointer to be registered with the request handle
+ * @data: The data pointer refers to memory that is not used by the kernel
+ *	  crypto API, but provided to the callback function for it to use. Here,
+ *	  the caller can provide a reference to memory the callback function can
+ *	  operate on. As the callback function is invoked asynchronously to the
+ *	  related functionality, it may need to access data structures of the
+ *	  related functionality which can be referenced using this pointer. The
+ *	  callback function can access the memory via the "data" field in the
+ *	  crypto_async_request data structure provided to the callback function.
+ *
+ * Setting the callback function that is triggered once the cipher operation
+ * completes
+ *
+ * The callback function is registered with the aead_request handle and
+ * must comply with the following template
+ *
+ *	void callback_function(struct crypto_async_request *req, int error)
+ */
+static inline void aead_request_set_callback(struct aead_request *req,
+					     u32 flags,
+					     crypto_completion_t compl,
+					     void *data)
+{
+	req->base.complete = compl;
+	req->base.data = data;
+	req->base.flags = flags;
+}
+
+/**
+ * aead_request_set_crypt - set data buffers
+ * @req: request handle
+ * @src: source scatter / gather list
+ * @dst: destination scatter / gather list
+ * @cryptlen: number of bytes to process from @src
+ * @iv: IV for the cipher operation which must comply with the IV size defined
+ *      by crypto_aead_ivsize()
+ *
+ * Setting the source data and destination data scatter / gather lists.
+ *
+ * For encryption, the source is treated as the plaintext and the
+ * destination is the ciphertext. For a decryption operation, the use is
+ * reversed - the source is the ciphertext and the destination is the plaintext.
+ *
+ * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
+ *		  the caller must concatenate the ciphertext followed by the
+ *		  authentication tag and provide the entire data stream to the
+ *		  decryption operation (i.e. the data length used for the
+ *		  initialization of the scatterlist and the data length for the
+ *		  decryption operation is identical). For encryption, however,
+ *		  the authentication tag is created while encrypting the data.
+ *		  The destination buffer must hold sufficient space for the
+ *		  ciphertext and the authentication tag while the encryption
+ *		  invocation must only point to the plaintext data size. The
+ *		  following code snippet illustrates the memory usage
+ *		  buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
+ *		  sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
+ *		  aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
+ */
+static inline void aead_request_set_crypt(struct aead_request *req,
+					  struct scatterlist *src,
+					  struct scatterlist *dst,
+					  unsigned int cryptlen, u8 *iv)
+{
+	req->src = src;
+	req->dst = dst;
+	req->cryptlen = cryptlen;
+	req->iv = iv;
+}
+
+/**
+ * aead_request_set_assoc() - set the associated data scatter / gather list
+ * @req: request handle
+ * @assoc: associated data scatter / gather list
+ * @assoclen: number of bytes to process from @assoc
+ *
+ * For encryption, the memory is filled with the associated data. For
+ * decryption, the memory must point to the associated data.
+ */
+static inline void aead_request_set_assoc(struct aead_request *req,
+					  struct scatterlist *assoc,
+					  unsigned int assoclen)
+{
+	req->assoc = assoc;
+	req->assoclen = assoclen;
+}
+
 static inline struct crypto_aead *aead_givcrypt_reqtfm(
 	struct aead_givcrypt_request *req)
 {
@@ -38,14 +468,12 @@ static inline struct crypto_aead *aead_givcrypt_reqtfm(
 
 static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
 {
-	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
-	return crt->givencrypt(req);
+	return aead_givcrypt_reqtfm(req)->givencrypt(req);
 };
 
 static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
 {
-	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
-	return crt->givdecrypt(req);
+	return aead_givcrypt_reqtfm(req)->givdecrypt(req);
 };
 
 static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
diff --git a/include/crypto/algapi.h b/include/crypto/algapi.h
index a949bf70983b8a7234091415495a92e1ed03163c..d4ebf6e9af6a536c589d55c914e56f1c6000f910 100644
--- a/include/crypto/algapi.h
+++ b/include/crypto/algapi.h
@@ -17,6 +17,7 @@
 #include <linux/kernel.h>
 #include <linux/skbuff.h>
 
+struct crypto_aead;
 struct module;
 struct rtattr;
 struct seq_file;
@@ -126,7 +127,6 @@ struct ablkcipher_walk {
 };
 
 extern const struct crypto_type crypto_ablkcipher_type;
-extern const struct crypto_type crypto_aead_type;
 extern const struct crypto_type crypto_blkcipher_type;
 
 void crypto_mod_put(struct crypto_alg *alg);
@@ -241,22 +241,6 @@ static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
 	return crypto_tfm_ctx_aligned(&tfm->base);
 }
 
-static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
-{
-	return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
-}
-
-static inline void *crypto_aead_ctx(struct crypto_aead *tfm)
-{
-	return crypto_tfm_ctx(&tfm->base);
-}
-
-static inline struct crypto_instance *crypto_aead_alg_instance(
-	struct crypto_aead *aead)
-{
-	return crypto_tfm_alg_instance(&aead->base);
-}
-
 static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
 	struct crypto_spawn *spawn)
 {
@@ -365,21 +349,6 @@ static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
 	return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
 }
 
-static inline void *aead_request_ctx(struct aead_request *req)
-{
-	return req->__ctx;
-}
-
-static inline void aead_request_complete(struct aead_request *req, int err)
-{
-	req->base.complete(&req->base, err);
-}
-
-static inline u32 aead_request_flags(struct aead_request *req)
-{
-	return req->base.flags;
-}
-
 static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
 						     u32 type, u32 mask)
 {
diff --git a/include/crypto/internal/aead.h b/include/crypto/internal/aead.h
index 750948cf46211c68c6e6a60f2d16793d129176c5..a2d104aa343060d930893856a4a1e108f22a1784 100644
--- a/include/crypto/internal/aead.h
+++ b/include/crypto/internal/aead.h
@@ -23,8 +23,40 @@ struct crypto_aead_spawn {
 	struct crypto_spawn base;
 };
 
+extern const struct crypto_type crypto_aead_type;
 extern const struct crypto_type crypto_nivaead_type;
 
+static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
+{
+	return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
+}
+
+static inline void *crypto_aead_ctx(struct crypto_aead *tfm)
+{
+	return crypto_tfm_ctx(&tfm->base);
+}
+
+static inline struct crypto_instance *crypto_aead_alg_instance(
+	struct crypto_aead *aead)
+{
+	return crypto_tfm_alg_instance(&aead->base);
+}
+
+static inline void *aead_request_ctx(struct aead_request *req)
+{
+	return req->__ctx;
+}
+
+static inline void aead_request_complete(struct aead_request *req, int err)
+{
+	req->base.complete(&req->base, err);
+}
+
+static inline u32 aead_request_flags(struct aead_request *req)
+{
+	return req->base.flags;
+}
+
 static inline void crypto_set_aead_spawn(
 	struct crypto_aead_spawn *spawn, struct crypto_instance *inst)
 {
@@ -50,9 +82,7 @@ static inline struct crypto_alg *crypto_aead_spawn_alg(
 static inline struct crypto_aead *crypto_spawn_aead(
 	struct crypto_aead_spawn *spawn)
 {
-	return __crypto_aead_cast(
-		crypto_spawn_tfm(&spawn->base, CRYPTO_ALG_TYPE_AEAD,
-				 CRYPTO_ALG_TYPE_MASK));
+	return crypto_spawn_tfm2(&spawn->base);
 }
 
 struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
@@ -64,7 +94,7 @@ void aead_geniv_exit(struct crypto_tfm *tfm);
 
 static inline struct crypto_aead *aead_geniv_base(struct crypto_aead *geniv)
 {
-	return crypto_aead_crt(geniv)->base;
+	return geniv->child;
 }
 
 static inline void *aead_givcrypt_reqctx(struct aead_givcrypt_request *req)
diff --git a/include/linux/crypto.h b/include/linux/crypto.h
index ee14140f8893b9b6f8a04c3fa17834e84d05c876..59ca4086ce6ac3862031bb6b8fe3228f03beb759 100644
--- a/include/linux/crypto.h
+++ b/include/linux/crypto.h
@@ -140,6 +140,7 @@ struct crypto_blkcipher;
 struct crypto_hash;
 struct crypto_tfm;
 struct crypto_type;
+struct aead_request;
 struct aead_givcrypt_request;
 struct skcipher_givcrypt_request;
 
@@ -174,32 +175,6 @@ struct ablkcipher_request {
 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 };
 
-/**
- *	struct aead_request - AEAD request
- *	@base: Common attributes for async crypto requests
- *	@assoclen: Length in bytes of associated data for authentication
- *	@cryptlen: Length of data to be encrypted or decrypted
- *	@iv: Initialisation vector
- *	@assoc: Associated data
- *	@src: Source data
- *	@dst: Destination data
- *	@__ctx: Start of private context data
- */
-struct aead_request {
-	struct crypto_async_request base;
-
-	unsigned int assoclen;
-	unsigned int cryptlen;
-
-	u8 *iv;
-
-	struct scatterlist *assoc;
-	struct scatterlist *src;
-	struct scatterlist *dst;
-
-	void *__ctx[] CRYPTO_MINALIGN_ATTR;
-};
-
 struct blkcipher_desc {
 	struct crypto_blkcipher *tfm;
 	void *info;
@@ -572,21 +547,6 @@ struct ablkcipher_tfm {
 	unsigned int reqsize;
 };
 
-struct aead_tfm {
-	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
-	              unsigned int keylen);
-	int (*encrypt)(struct aead_request *req);
-	int (*decrypt)(struct aead_request *req);
-	int (*givencrypt)(struct aead_givcrypt_request *req);
-	int (*givdecrypt)(struct aead_givcrypt_request *req);
-
-	struct crypto_aead *base;
-
-	unsigned int ivsize;
-	unsigned int authsize;
-	unsigned int reqsize;
-};
-
 struct blkcipher_tfm {
 	void *iv;
 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
@@ -626,7 +586,6 @@ struct compress_tfm {
 };
 
 #define crt_ablkcipher	crt_u.ablkcipher
-#define crt_aead	crt_u.aead
 #define crt_blkcipher	crt_u.blkcipher
 #define crt_cipher	crt_u.cipher
 #define crt_hash	crt_u.hash
@@ -638,7 +597,6 @@ struct crypto_tfm {
 	
 	union {
 		struct ablkcipher_tfm ablkcipher;
-		struct aead_tfm aead;
 		struct blkcipher_tfm blkcipher;
 		struct cipher_tfm cipher;
 		struct hash_tfm hash;
@@ -656,10 +614,6 @@ struct crypto_ablkcipher {
 	struct crypto_tfm base;
 };
 
-struct crypto_aead {
-	struct crypto_tfm base;
-};
-
 struct crypto_blkcipher {
 	struct crypto_tfm base;
 };
@@ -1151,400 +1105,6 @@ static inline void ablkcipher_request_set_crypt(
 	req->info = iv;
 }
 
-/**
- * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
- *
- * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
- * (listed as type "aead" in /proc/crypto)
- *
- * The most prominent examples for this type of encryption is GCM and CCM.
- * However, the kernel supports other types of AEAD ciphers which are defined
- * with the following cipher string:
- *
- *	authenc(keyed message digest, block cipher)
- *
- * For example: authenc(hmac(sha256), cbc(aes))
- *
- * The example code provided for the asynchronous block cipher operation
- * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
- * the *aead* pendants discussed in the following. In addtion, for the AEAD
- * operation, the aead_request_set_assoc function must be used to set the
- * pointer to the associated data memory location before performing the
- * encryption or decryption operation. In case of an encryption, the associated
- * data memory is filled during the encryption operation. For decryption, the
- * associated data memory must contain data that is used to verify the integrity
- * of the decrypted data. Another deviation from the asynchronous block cipher
- * operation is that the caller should explicitly check for -EBADMSG of the
- * crypto_aead_decrypt. That error indicates an authentication error, i.e.
- * a breach in the integrity of the message. In essence, that -EBADMSG error
- * code is the key bonus an AEAD cipher has over "standard" block chaining
- * modes.
- */
-
-static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
-{
-	return (struct crypto_aead *)tfm;
-}
-
-/**
- * crypto_alloc_aead() - allocate AEAD cipher handle
- * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
- *	     AEAD cipher
- * @type: specifies the type of the cipher
- * @mask: specifies the mask for the cipher
- *
- * Allocate a cipher handle for an AEAD. The returned struct
- * crypto_aead is the cipher handle that is required for any subsequent
- * API invocation for that AEAD.
- *
- * Return: allocated cipher handle in case of success; IS_ERR() is true in case
- *	   of an error, PTR_ERR() returns the error code.
- */
-struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
-
-static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
-{
-	return &tfm->base;
-}
-
-/**
- * crypto_free_aead() - zeroize and free aead handle
- * @tfm: cipher handle to be freed
- */
-static inline void crypto_free_aead(struct crypto_aead *tfm)
-{
-	crypto_free_tfm(crypto_aead_tfm(tfm));
-}
-
-static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm)
-{
-	return &crypto_aead_tfm(tfm)->crt_aead;
-}
-
-/**
- * crypto_aead_ivsize() - obtain IV size
- * @tfm: cipher handle
- *
- * The size of the IV for the aead referenced by the cipher handle is
- * returned. This IV size may be zero if the cipher does not need an IV.
- *
- * Return: IV size in bytes
- */
-static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
-{
-	return crypto_aead_crt(tfm)->ivsize;
-}
-
-/**
- * crypto_aead_authsize() - obtain maximum authentication data size
- * @tfm: cipher handle
- *
- * The maximum size of the authentication data for the AEAD cipher referenced
- * by the AEAD cipher handle is returned. The authentication data size may be
- * zero if the cipher implements a hard-coded maximum.
- *
- * The authentication data may also be known as "tag value".
- *
- * Return: authentication data size / tag size in bytes
- */
-static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
-{
-	return crypto_aead_crt(tfm)->authsize;
-}
-
-/**
- * crypto_aead_blocksize() - obtain block size of cipher
- * @tfm: cipher handle
- *
- * The block size for the AEAD referenced with the cipher handle is returned.
- * The caller may use that information to allocate appropriate memory for the
- * data returned by the encryption or decryption operation
- *
- * Return: block size of cipher
- */
-static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
-{
-	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
-}
-
-static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
-{
-	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
-}
-
-static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
-{
-	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
-}
-
-static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
-{
-	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
-}
-
-static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
-{
-	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
-}
-
-/**
- * crypto_aead_setkey() - set key for cipher
- * @tfm: cipher handle
- * @key: buffer holding the key
- * @keylen: length of the key in bytes
- *
- * The caller provided key is set for the AEAD referenced by the cipher
- * handle.
- *
- * Note, the key length determines the cipher type. Many block ciphers implement
- * different cipher modes depending on the key size, such as AES-128 vs AES-192
- * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
- * is performed.
- *
- * Return: 0 if the setting of the key was successful; < 0 if an error occurred
- */
-static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key,
-				     unsigned int keylen)
-{
-	struct aead_tfm *crt = crypto_aead_crt(tfm);
-
-	return crt->setkey(crt->base, key, keylen);
-}
-
-/**
- * crypto_aead_setauthsize() - set authentication data size
- * @tfm: cipher handle
- * @authsize: size of the authentication data / tag in bytes
- *
- * Set the authentication data size / tag size. AEAD requires an authentication
- * tag (or MAC) in addition to the associated data.
- *
- * Return: 0 if the setting of the key was successful; < 0 if an error occurred
- */
-int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
-
-static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
-{
-	return __crypto_aead_cast(req->base.tfm);
-}
-
-/**
- * crypto_aead_encrypt() - encrypt plaintext
- * @req: reference to the aead_request handle that holds all information
- *	 needed to perform the cipher operation
- *
- * Encrypt plaintext data using the aead_request handle. That data structure
- * and how it is filled with data is discussed with the aead_request_*
- * functions.
- *
- * IMPORTANT NOTE The encryption operation creates the authentication data /
- *		  tag. That data is concatenated with the created ciphertext.
- *		  The ciphertext memory size is therefore the given number of
- *		  block cipher blocks + the size defined by the
- *		  crypto_aead_setauthsize invocation. The caller must ensure
- *		  that sufficient memory is available for the ciphertext and
- *		  the authentication tag.
- *
- * Return: 0 if the cipher operation was successful; < 0 if an error occurred
- */
-static inline int crypto_aead_encrypt(struct aead_request *req)
-{
-	return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req);
-}
-
-/**
- * crypto_aead_decrypt() - decrypt ciphertext
- * @req: reference to the ablkcipher_request handle that holds all information
- *	 needed to perform the cipher operation
- *
- * Decrypt ciphertext data using the aead_request handle. That data structure
- * and how it is filled with data is discussed with the aead_request_*
- * functions.
- *
- * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
- *		  authentication data / tag. That authentication data / tag
- *		  must have the size defined by the crypto_aead_setauthsize
- *		  invocation.
- *
- *
- * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
- *	   cipher operation performs the authentication of the data during the
- *	   decryption operation. Therefore, the function returns this error if
- *	   the authentication of the ciphertext was unsuccessful (i.e. the
- *	   integrity of the ciphertext or the associated data was violated);
- *	   < 0 if an error occurred.
- */
-static inline int crypto_aead_decrypt(struct aead_request *req)
-{
-	if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
-		return -EINVAL;
-
-	return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req);
-}
-
-/**
- * DOC: Asynchronous AEAD Request Handle
- *
- * The aead_request data structure contains all pointers to data required for
- * the AEAD cipher operation. This includes the cipher handle (which can be
- * used by multiple aead_request instances), pointer to plaintext and
- * ciphertext, asynchronous callback function, etc. It acts as a handle to the
- * aead_request_* API calls in a similar way as AEAD handle to the
- * crypto_aead_* API calls.
- */
-
-/**
- * crypto_aead_reqsize() - obtain size of the request data structure
- * @tfm: cipher handle
- *
- * Return: number of bytes
- */
-static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
-{
-	return crypto_aead_crt(tfm)->reqsize;
-}
-
-/**
- * aead_request_set_tfm() - update cipher handle reference in request
- * @req: request handle to be modified
- * @tfm: cipher handle that shall be added to the request handle
- *
- * Allow the caller to replace the existing aead handle in the request
- * data structure with a different one.
- */
-static inline void aead_request_set_tfm(struct aead_request *req,
-					struct crypto_aead *tfm)
-{
-	req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base);
-}
-
-/**
- * aead_request_alloc() - allocate request data structure
- * @tfm: cipher handle to be registered with the request
- * @gfp: memory allocation flag that is handed to kmalloc by the API call.
- *
- * Allocate the request data structure that must be used with the AEAD
- * encrypt and decrypt API calls. During the allocation, the provided aead
- * handle is registered in the request data structure.
- *
- * Return: allocated request handle in case of success; IS_ERR() is true in case
- *	   of an error, PTR_ERR() returns the error code.
- */
-static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
-						      gfp_t gfp)
-{
-	struct aead_request *req;
-
-	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
-
-	if (likely(req))
-		aead_request_set_tfm(req, tfm);
-
-	return req;
-}
-
-/**
- * aead_request_free() - zeroize and free request data structure
- * @req: request data structure cipher handle to be freed
- */
-static inline void aead_request_free(struct aead_request *req)
-{
-	kzfree(req);
-}
-
-/**
- * aead_request_set_callback() - set asynchronous callback function
- * @req: request handle
- * @flags: specify zero or an ORing of the flags
- *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
- *	   increase the wait queue beyond the initial maximum size;
- *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
- * @compl: callback function pointer to be registered with the request handle
- * @data: The data pointer refers to memory that is not used by the kernel
- *	  crypto API, but provided to the callback function for it to use. Here,
- *	  the caller can provide a reference to memory the callback function can
- *	  operate on. As the callback function is invoked asynchronously to the
- *	  related functionality, it may need to access data structures of the
- *	  related functionality which can be referenced using this pointer. The
- *	  callback function can access the memory via the "data" field in the
- *	  crypto_async_request data structure provided to the callback function.
- *
- * Setting the callback function that is triggered once the cipher operation
- * completes
- *
- * The callback function is registered with the aead_request handle and
- * must comply with the following template
- *
- *	void callback_function(struct crypto_async_request *req, int error)
- */
-static inline void aead_request_set_callback(struct aead_request *req,
-					     u32 flags,
-					     crypto_completion_t compl,
-					     void *data)
-{
-	req->base.complete = compl;
-	req->base.data = data;
-	req->base.flags = flags;
-}
-
-/**
- * aead_request_set_crypt - set data buffers
- * @req: request handle
- * @src: source scatter / gather list
- * @dst: destination scatter / gather list
- * @cryptlen: number of bytes to process from @src
- * @iv: IV for the cipher operation which must comply with the IV size defined
- *      by crypto_aead_ivsize()
- *
- * Setting the source data and destination data scatter / gather lists.
- *
- * For encryption, the source is treated as the plaintext and the
- * destination is the ciphertext. For a decryption operation, the use is
- * reversed - the source is the ciphertext and the destination is the plaintext.
- *
- * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
- *		  the caller must concatenate the ciphertext followed by the
- *		  authentication tag and provide the entire data stream to the
- *		  decryption operation (i.e. the data length used for the
- *		  initialization of the scatterlist and the data length for the
- *		  decryption operation is identical). For encryption, however,
- *		  the authentication tag is created while encrypting the data.
- *		  The destination buffer must hold sufficient space for the
- *		  ciphertext and the authentication tag while the encryption
- *		  invocation must only point to the plaintext data size. The
- *		  following code snippet illustrates the memory usage
- *		  buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
- *		  sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
- *		  aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
- */
-static inline void aead_request_set_crypt(struct aead_request *req,
-					  struct scatterlist *src,
-					  struct scatterlist *dst,
-					  unsigned int cryptlen, u8 *iv)
-{
-	req->src = src;
-	req->dst = dst;
-	req->cryptlen = cryptlen;
-	req->iv = iv;
-}
-
-/**
- * aead_request_set_assoc() - set the associated data scatter / gather list
- * @req: request handle
- * @assoc: associated data scatter / gather list
- * @assoclen: number of bytes to process from @assoc
- *
- * For encryption, the memory is filled with the associated data. For
- * decryption, the memory must point to the associated data.
- */
-static inline void aead_request_set_assoc(struct aead_request *req,
-					  struct scatterlist *assoc,
-					  unsigned int assoclen)
-{
-	req->assoc = assoc;
-	req->assoclen = assoclen;
-}
-
 /**
  * DOC: Synchronous Block Cipher API
  *