Newer
Older
Greg Kroah-Hartman
committed
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H
#ifndef __ASSEMBLY__
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <linux/seqlock.h>
#include <linux/pageblock-flags.h>
#include <linux/page-flags-layout.h>
/* Free memory management - zoned buddy allocator. */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif
#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
/*
* PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
* costly to service. That is between allocation orders which should
* coalesce naturally under reasonable reclaim pressure and those which
* will not.
*/
#define PAGE_ALLOC_COSTLY_ORDER 3
MIGRATE_UNMOVABLE,
MIGRATE_MOVABLE,
Mel Gorman
committed
MIGRATE_RECLAIMABLE,
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
#ifdef CONFIG_CMA
/*
* MIGRATE_CMA migration type is designed to mimic the way
* ZONE_MOVABLE works. Only movable pages can be allocated
* from MIGRATE_CMA pageblocks and page allocator never
* implicitly change migration type of MIGRATE_CMA pageblock.
*
* The way to use it is to change migratetype of a range of
* pageblocks to MIGRATE_CMA which can be done by
* __free_pageblock_cma() function. What is important though
* is that a range of pageblocks must be aligned to
* MAX_ORDER_NR_PAGES should biggest page be bigger then
* a single pageblock.
*/
MIGRATE_CMA,
#endif
MIGRATE_ISOLATE, /* can't allocate from here */
/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
extern const char * const migratetype_names[MIGRATE_TYPES];
#ifdef CONFIG_CMA
# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
#else
# define is_migrate_cma(migratetype) false
Vlastimil Babka
committed
static inline bool is_migrate_movable(int mt)
{
return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
}
#define for_each_migratetype_order(order, type) \
for (order = 0; order < MAX_ORDER; order++) \
for (type = 0; type < MIGRATE_TYPES; type++)
Mel Gorman
committed
extern int page_group_by_mobility_disabled;
#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
#define get_pageblock_migratetype(page) \
get_pfnblock_flags_mask(page, page_to_pfn(page), \
PB_migrate_end, MIGRATETYPE_MASK)
struct list_head free_list[MIGRATE_TYPES];
unsigned long nr_free;
};
struct pglist_data;
/*
* zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
* So add a wild amount of padding here to ensure that they fall into separate
* cachelines. There are very few zone structures in the machine, so space
* consumption is not a concern here.
*/
#if defined(CONFIG_SMP)
struct zone_padding {
char x[0];
Ravikiran G Thirumalai
committed
} ____cacheline_internodealigned_in_smp;
#define ZONE_PADDING(name) struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif
#ifdef CONFIG_NUMA
enum numa_stat_item {
NUMA_HIT, /* allocated in intended node */
NUMA_MISS, /* allocated in non intended node */
NUMA_FOREIGN, /* was intended here, hit elsewhere */
NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
NUMA_LOCAL, /* allocation from local node */
NUMA_OTHER, /* allocation from other node */
NR_VM_NUMA_STAT_ITEMS
};
#else
#define NR_VM_NUMA_STAT_ITEMS 0
#endif
enum zone_stat_item {
/* First 128 byte cacheline (assuming 64 bit words) */
NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
NR_ZONE_ACTIVE_ANON,
NR_ZONE_INACTIVE_FILE,
NR_ZONE_ACTIVE_FILE,
NR_ZONE_UNEVICTABLE,
NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
NR_MLOCK, /* mlock()ed pages found and moved off LRU */
NR_PAGETABLE, /* used for pagetables */
NR_KERNEL_STACK_KB, /* measured in KiB */
KOSAKI Motohiro
committed
/* Second 128 byte cacheline */
NR_BOUNCE,
#if IS_ENABLED(CONFIG_ZSMALLOC)
NR_ZSPAGES, /* allocated in zsmalloc */
NR_VM_ZONE_STAT_ITEMS };
NR_LRU_BASE,
NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
NR_ACTIVE_ANON, /* " " " " " */
NR_INACTIVE_FILE, /* " " " " " */
NR_ACTIVE_FILE, /* " " " " " */
NR_UNEVICTABLE, /* " " " " " */
NR_SLAB_RECLAIMABLE,
NR_SLAB_UNRECLAIMABLE,
NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
WORKINGSET_REFAULT,
WORKINGSET_ACTIVATE,
WORKINGSET_RESTORE,
WORKINGSET_NODERECLAIM,
NR_ANON_MAPPED, /* Mapped anonymous pages */
NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
only modified from process context */
NR_FILE_PAGES,
NR_FILE_DIRTY,
NR_WRITEBACK,
NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
NR_SHMEM_THPS,
NR_SHMEM_PMDMAPPED,
NR_ANON_THPS,
NR_UNSTABLE_NFS, /* NFS unstable pages */
NR_VMSCAN_WRITE,
NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
NR_DIRTIED, /* page dirtyings since bootup */
NR_WRITTEN, /* page writings since bootup */
NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
NR_VM_NODE_STAT_ITEMS
};
/*
* We do arithmetic on the LRU lists in various places in the code,
* so it is important to keep the active lists LRU_ACTIVE higher in
* the array than the corresponding inactive lists, and to keep
* the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
*
* This has to be kept in sync with the statistics in zone_stat_item
* above and the descriptions in vmstat_text in mm/vmstat.c
*/
#define LRU_BASE 0
#define LRU_ACTIVE 1
#define LRU_FILE 2
LRU_INACTIVE_ANON = LRU_BASE,
LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
LRU_UNEVICTABLE,
NR_LRU_LISTS
};
#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
struct zone_reclaim_stat {
/*
* The pageout code in vmscan.c keeps track of how many of the
* mem/swap backed and file backed pages are referenced.
* The higher the rotated/scanned ratio, the more valuable
* that cache is.
*
* The anon LRU stats live in [0], file LRU stats in [1]
*/
unsigned long recent_rotated[2];
unsigned long recent_scanned[2];
};
struct list_head lists[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
/* Evictions & activations on the inactive file list */
atomic_long_t inactive_age;
/* Refaults at the time of last reclaim cycle */
unsigned long refaults;
/* Mask used at gathering information at once (see memcontrol.c) */
#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
/* Isolate unmapped file */
#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
/* Isolate for asynchronous migration */
#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
/* Isolate unevictable pages */
#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
/* LRU Isolation modes. */
typedef unsigned __bitwise isolate_mode_t;
enum zone_watermarks {
WMARK_MIN,
WMARK_LOW,
WMARK_HIGH,
NR_WMARK
};
Mel Gorman
committed
#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
struct per_cpu_pages {
int count; /* number of pages in the list */
int high; /* high watermark, emptying needed */
int batch; /* chunk size for buddy add/remove */
/* Lists of pages, one per migrate type stored on the pcp-lists */
struct list_head lists[MIGRATE_PCPTYPES];
struct per_cpu_pages pcp;
#ifdef CONFIG_NUMA
s8 expire;
u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
#ifdef CONFIG_SMP
s8 stat_threshold;
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
struct per_cpu_nodestat {
s8 stat_threshold;
s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
};
Christoph Lameter
committed
enum zone_type {
#ifdef CONFIG_ZONE_DMA
Christoph Lameter
committed
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
*
* Some examples
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
Christoph Lameter
committed
* arm Various
* alpha Unlimited or 0-16MB.
*
* i386, x86_64 and multiple other arches
* <16M.
*/
ZONE_DMA,
#ifdef CONFIG_ZONE_DMA32
Christoph Lameter
committed
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
Christoph Lameter
committed
/*
* Normal addressable memory is in ZONE_NORMAL. DMA operations can be
* performed on pages in ZONE_NORMAL if the DMA devices support
* transfers to all addressable memory.
*/
ZONE_NORMAL,
#ifdef CONFIG_HIGHMEM
Christoph Lameter
committed
/*
* A memory area that is only addressable by the kernel through
* mapping portions into its own address space. This is for example
* used by i386 to allow the kernel to address the memory beyond
* 900MB. The kernel will set up special mappings (page
* table entries on i386) for each page that the kernel needs to
* access.
*/
ZONE_HIGHMEM,
#ifdef CONFIG_ZONE_DEVICE
ZONE_DEVICE,
#endif
Christoph Lameter
committed
};
Mel Gorman
committed
/* Read-mostly fields */
/* zone watermarks, access with *_wmark_pages(zone) macros */
unsigned long _watermark[NR_WMARK];
Mel Gorman
committed
unsigned long watermark_boost;
unsigned long nr_reserved_highatomic;
* We don't know if the memory that we're going to allocate will be
* freeable or/and it will be released eventually, so to avoid totally
* wasting several GB of ram we must reserve some of the lower zone
* memory (otherwise we risk to run OOM on the lower zones despite
* there being tons of freeable ram on the higher zones). This array is
* recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
* changes.
Mel Gorman
committed
long lowmem_reserve[MAX_NR_ZONES];
Mel Gorman
committed
#endif
struct pglist_data *zone_pgdat;
struct per_cpu_pageset __percpu *pageset;
Mel Gorman
committed
#ifndef CONFIG_SPARSEMEM
/*
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
* In SPARSEMEM, this map is stored in struct mem_section
*/
unsigned long *pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
unsigned long zone_start_pfn;
* spanned_pages is the total pages spanned by the zone, including
* holes, which is calculated as:
* spanned_pages = zone_end_pfn - zone_start_pfn;
* present_pages is physical pages existing within the zone, which
* is calculated as:
* present_pages = spanned_pages - absent_pages(pages in holes);
*
* managed_pages is present pages managed by the buddy system, which
* is calculated as (reserved_pages includes pages allocated by the
* bootmem allocator):
* managed_pages = present_pages - reserved_pages;
*
* So present_pages may be used by memory hotplug or memory power
* management logic to figure out unmanaged pages by checking
* (present_pages - managed_pages). And managed_pages should be used
* by page allocator and vm scanner to calculate all kinds of watermarks
* and thresholds.
*
* Locking rules:
*
* zone_start_pfn and spanned_pages are protected by span_seqlock.
* It is a seqlock because it has to be read outside of zone->lock,
* and it is done in the main allocator path. But, it is written
* quite infrequently.
*
* The span_seq lock is declared along with zone->lock because it is
* frequently read in proximity to zone->lock. It's good to
* give them a chance of being in the same cacheline.
* Write access to present_pages at runtime should be protected by
* mem_hotplug_begin/end(). Any reader who can't tolerant drift of
* present_pages should get_online_mems() to get a stable value.
atomic_long_t managed_pages;
unsigned long spanned_pages;
unsigned long present_pages;
Mel Gorman
committed
const char *name;
#ifdef CONFIG_MEMORY_ISOLATION
/*
* Number of isolated pageblock. It is used to solve incorrect
* freepage counting problem due to racy retrieving migratetype
* of pageblock. Protected by zone->lock.
*/
unsigned long nr_isolate_pageblock;
#endif
Mel Gorman
committed
#ifdef CONFIG_MEMORY_HOTPLUG
/* see spanned/present_pages for more description */
seqlock_t span_seqlock;
#endif
Mel Gorman
committed
/* Write-intensive fields used from the page allocator */
Mel Gorman
committed
ZONE_PADDING(_pad1_)
Mel Gorman
committed
/* free areas of different sizes */
struct free_area free_area[MAX_ORDER];
/* zone flags, see below */
unsigned long flags;
/* Primarily protects free_area */
spinlock_t lock;
/* Write-intensive fields used by compaction and vmstats. */
Mel Gorman
committed
ZONE_PADDING(_pad2_)
/*
* When free pages are below this point, additional steps are taken
* when reading the number of free pages to avoid per-cpu counter
* drift allowing watermarks to be breached
*/
unsigned long percpu_drift_mark;
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/* pfn where compaction free scanner should start */
unsigned long compact_cached_free_pfn;
/* pfn where async and sync compaction migration scanner should start */
unsigned long compact_cached_migrate_pfn[2];
unsigned long compact_init_migrate_pfn;
unsigned long compact_init_free_pfn;
Mel Gorman
committed
#endif
#ifdef CONFIG_COMPACTION
/*
* On compaction failure, 1<<compact_defer_shift compactions
* are skipped before trying again. The number attempted since
* last failure is tracked with compact_considered.
*/
unsigned int compact_considered;
unsigned int compact_defer_shift;
int compact_order_failed;
#endif
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/* Set to true when the PG_migrate_skip bits should be cleared */
bool compact_blockskip_flush;
#endif
bool contiguous;
Mel Gorman
committed
ZONE_PADDING(_pad3_)
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
Ravikiran G Thirumalai
committed
} ____cacheline_internodealigned_in_smp;
enum pgdat_flags {
PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
Mel Gorman
committed
* a congested BDI
*/
PGDAT_DIRTY, /* reclaim scanning has recently found
Mel Gorman
committed
* many dirty file pages at the tail
* of the LRU.
*/
PGDAT_WRITEBACK, /* reclaim scanning has recently found
* many pages under writeback
*/
PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
enum zone_flags {
ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
* Cleared when kswapd is woken.
*/
};
static inline unsigned long zone_managed_pages(struct zone *zone)
{
return (unsigned long)atomic_long_read(&zone->managed_pages);
}
static inline unsigned long zone_end_pfn(const struct zone *zone)
{
return zone->zone_start_pfn + zone->spanned_pages;
}
static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
{
return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
}
static inline bool zone_is_initialized(struct zone *zone)
{
return zone->initialized;
}
static inline bool zone_is_empty(struct zone *zone)
{
return zone->spanned_pages == 0;
}
/*
* Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
* intersection with the given zone
*/
static inline bool zone_intersects(struct zone *zone,
unsigned long start_pfn, unsigned long nr_pages)
{
if (zone_is_empty(zone))
return false;
if (start_pfn >= zone_end_pfn(zone) ||
start_pfn + nr_pages <= zone->zone_start_pfn)
return false;
return true;
}
/*
* The "priority" of VM scanning is how much of the queues we will scan in one
* go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
* queues ("queue_length >> 12") during an aging round.
*/
#define DEF_PRIORITY 12
/* Maximum number of zones on a zonelist */
#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
enum {
ZONELIST_FALLBACK, /* zonelist with fallback */
/*
* The NUMA zonelists are doubled because we need zonelists that
* restrict the allocations to a single node for __GFP_THISNODE.
*/
ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
/*
* This struct contains information about a zone in a zonelist. It is stored
* here to avoid dereferences into large structures and lookups of tables
*/
struct zoneref {
struct zone *zone; /* Pointer to actual zone */
int zone_idx; /* zone_idx(zoneref->zone) */
};
/*
* One allocation request operates on a zonelist. A zonelist
* is a list of zones, the first one is the 'goal' of the
* allocation, the other zones are fallback zones, in decreasing
* priority.
*
* To speed the reading of the zonelist, the zonerefs contain the zone index
* of the entry being read. Helper functions to access information given
* a struct zoneref are
*
* zonelist_zone() - Return the struct zone * for an entry in _zonerefs
* zonelist_zone_idx() - Return the index of the zone for an entry
* zonelist_node_idx() - Return the index of the node for an entry
struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
#ifndef CONFIG_DISCONTIGMEM
/* The array of struct pages - for discontigmem use pgdat->lmem_map */
extern struct page *mem_map;
#endif
/*
* On NUMA machines, each NUMA node would have a pg_data_t to describe
* it's memory layout. On UMA machines there is a single pglist_data which
* describes the whole memory.
*
* Memory statistics and page replacement data structures are maintained on a
* per-zone basis.
*/
struct bootmem_data;
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
#ifdef CONFIG_PAGE_EXTENSION
struct page_ext *node_page_ext;
#endif
#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
* Must be held any time you expect node_start_pfn,
* node_present_pages, node_spanned_pages or nr_zones to stay constant.
Cody P Schafer
committed
* pgdat_resize_lock() and pgdat_resize_unlock() are provided to
* manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
* or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
Cody P Schafer
committed
*
Cody P Schafer
committed
* Nests above zone->lock and zone->span_seqlock
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
wait_queue_head_t kswapd_wait;
wait_queue_head_t pfmemalloc_wait;
struct task_struct *kswapd; /* Protected by
mem_hotplug_begin/end() */
int kswapd_order;
enum zone_type kswapd_classzone_idx;
int kswapd_failures; /* Number of 'reclaimed == 0' runs */
#ifdef CONFIG_COMPACTION
int kcompactd_max_order;
enum zone_type kcompactd_classzone_idx;
wait_queue_head_t kcompactd_wait;
struct task_struct *kcompactd;
Andrea Arcangeli
committed
#endif
/*
* This is a per-node reserve of pages that are not available
* to userspace allocations.
*/
unsigned long totalreserve_pages;
#ifdef CONFIG_NUMA
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
unsigned long min_slab_pages;
#endif /* CONFIG_NUMA */
/* Write-intensive fields used by page reclaim */
ZONE_PADDING(_pad1_)
spinlock_t lru_lock;
Mel Gorman
committed
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
/*
* If memory initialisation on large machines is deferred then this
* is the first PFN that needs to be initialised.
*/
unsigned long first_deferred_pfn;
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
spinlock_t split_queue_lock;
struct list_head split_queue;
unsigned long split_queue_len;
#endif
/* Fields commonly accessed by the page reclaim scanner */
struct lruvec lruvec;
unsigned long flags;
ZONE_PADDING(_pad2_)
/* Per-node vmstats */
struct per_cpu_nodestat __percpu *per_cpu_nodestats;
atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
} pg_data_t;
#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
#else
#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
static inline spinlock_t *zone_lru_lock(struct zone *zone)
{
return &zone->zone_pgdat->lru_lock;
}
static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
return &pgdat->lruvec;
static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
{
return pgdat->node_start_pfn + pgdat->node_spanned_pages;
}
static inline bool pgdat_is_empty(pg_data_t *pgdat)
{
return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
}
#include <linux/memory_hotplug.h>
void build_all_zonelists(pg_data_t *pgdat);
void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
enum zone_type classzone_idx);
Michal Hocko
committed
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
int classzone_idx, unsigned int alloc_flags,
long free_pages);
bool zone_watermark_ok(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx,
unsigned int alloc_flags);
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx);
enum memmap_context {
MEMMAP_EARLY,
MEMMAP_HOTPLUG,
};
extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
unsigned long size);
Yasunori Goto
committed
extern void lruvec_init(struct lruvec *lruvec);
static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
return container_of(lruvec, struct pglist_data, lruvec);
extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif
#if defined(CONFIG_SPARSEMEM)
void memblocks_present(void);
#else
static inline void memblocks_present(void) {}
#endif
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
int local_memory_node(int node_id);
#else
static inline int local_memory_node(int node_id) { return node_id; };
#endif
/*
* zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
*/
#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
#ifdef CONFIG_ZONE_DEVICE
static inline bool is_dev_zone(const struct zone *zone)
{
return zone_idx(zone) == ZONE_DEVICE;
}
#else
static inline bool is_dev_zone(const struct zone *zone)
{
return false;
}
#endif
Mel Gorman
committed
/*
* Returns true if a zone has pages managed by the buddy allocator.
* All the reclaim decisions have to use this function rather than
* populated_zone(). If the whole zone is reserved then we can easily
* end up with populated_zone() && !managed_zone().
*/
static inline bool managed_zone(struct zone *zone)
{
return zone_managed_pages(zone);
Mel Gorman
committed
}
/* Returns true if a zone has memory */
static inline bool populated_zone(struct zone *zone)
Mel Gorman
committed
return zone->present_pages;
#ifdef CONFIG_NUMA
static inline int zone_to_nid(struct zone *zone)
{
return zone->node;
}
static inline void zone_set_nid(struct zone *zone, int nid)
{
zone->node = nid;
}
#else
static inline int zone_to_nid(struct zone *zone)
{
return 0;
}
static inline void zone_set_nid(struct zone *zone, int nid) {}
#endif
static inline int zone_movable_is_highmem(void)
{
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
return movable_zone == ZONE_HIGHMEM;
#else
return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
Christoph Lameter
committed
static inline int is_highmem_idx(enum zone_type idx)
#ifdef CONFIG_HIGHMEM
return (idx == ZONE_HIGHMEM ||
(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
#else
return 0;
#endif
* is_highmem - helper function to quickly check if a struct zone is a
* highmem zone or not. This is an attempt to keep references
* to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
* @zone - pointer to struct zone variable
*/
static inline int is_highmem(struct zone *zone)
{
#ifdef CONFIG_HIGHMEM
#else
return 0;
#endif
}
/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
Mel Gorman
committed
int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
Christoph Lameter
committed
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern int numa_zonelist_order_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
extern char numa_zonelist_order[];
#define NUMA_ZONELIST_ORDER_LEN 16
#ifndef CONFIG_NEED_MULTIPLE_NODES
extern struct pglist_data contig_page_data;
#define NODE_DATA(nid) (&contig_page_data)
#define NODE_MEM_MAP(nid) mem_map
#else /* CONFIG_NEED_MULTIPLE_NODES */
#endif /* !CONFIG_NEED_MULTIPLE_NODES */
extern struct pglist_data *first_online_pgdat(void);
extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
extern struct zone *next_zone(struct zone *zone);
* for_each_online_pgdat - helper macro to iterate over all online nodes
* @pgdat - pointer to a pg_data_t variable
*/
#define for_each_online_pgdat(pgdat) \
for (pgdat = first_online_pgdat(); \
pgdat; \
pgdat = next_online_pgdat(pgdat))
/**
* for_each_zone - helper macro to iterate over all memory zones
* @zone - pointer to struct zone variable
*
* The user only needs to declare the zone variable, for_each_zone
* fills it in.
*/
#define for_each_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone))
#define for_each_populated_zone(zone) \
for (zone = (first_online_pgdat())->node_zones; \
zone; \
zone = next_zone(zone)) \
if (!populated_zone(zone)) \
; /* do nothing */ \
else
static inline struct zone *zonelist_zone(struct zoneref *zoneref)
{
return zoneref->zone;
}
static inline int zonelist_zone_idx(struct zoneref *zoneref)
{
return zoneref->zone_idx;
}
static inline int zonelist_node_idx(struct zoneref *zoneref)
{
return zone_to_nid(zoneref->zone);
}
struct zoneref *__next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes);
/**
* next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
* @z - The cursor used as a starting point for the search
* @highest_zoneidx - The zone index of the highest zone to return
* @nodes - An optional nodemask to filter the zonelist with
*
* This function returns the next zone at or below a given zone index that is
* within the allowed nodemask using a cursor as the starting point for the
* search. The zoneref returned is a cursor that represents the current zone
* being examined. It should be advanced by one before calling
* next_zones_zonelist again.
static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
enum zone_type highest_zoneidx,
nodemask_t *nodes)
{
if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
return z;
return __next_zones_zonelist(z, highest_zoneidx, nodes);
}